Elevation of manganese superoxide dismutase gene expression by thioredoxin.
نویسندگان
چکیده
Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that dismutates potentially toxic superoxide radical into hydrogen peroxide and dioxygen. This enzyme is critical for protection against cellular injury due to elevated partial pressures of oxygen. Thioredoxin (TRX) is a potent protein disulfide reductase found in most organisms that participates in many thiol-dependent cellular reductive processes and plays an important role in antioxidant defense, signal transduction, and regulation of cell growth and proliferation. Here we describe induction of manganese superoxide dismutase by thioredoxin. MnSOD mRNA and activity were increased dramatically by low concentrations of TRX (28 microM). Elevation of MnSOD mRNA by TRX was inhibited by actinomycin D, but not cycloheximide, occurring both in cell lines and primary human lung microvascular endothelial cells. mRNAs for other antioxidant enzymes including copper-zinc superoxide dismutase and catalase were not elevated, demonstrating specificity of induction of MnSOD by TRX. Thiol oxidation by diamide or alkylation by chlorodinitrobenzene inhibited MnSOD induction, further indicating a requirement for reduced TRX. Because both oxidized and reduced thioredoxin (28 microM) induced MnSOD mRNA, the intracellular redox status of externally added Escherichia coli oxidized TRX was determined. About 45% of internalized E. coli TRX was reduced, with 8% in fully reduced form and about 37% in partially reduced form. However, when TRX reductase and nicotinamide adenine dinucleotide (NADPH) were added to the extracellular medium with TRX, more than 80% of E. coli TRX was found to be in a fully reduced state in human adenocarcinoma (A549) cells. Although lower concentrations of oxidized TRX (7 microM) did not induce MnSOD mRNA, this concentration of TRX, when reduced by NADPH and TRX reductase, increased MnSOD mRNA six-fold. In additional studies, MCF-7 cells stably transfected with the human TRX gene had elevated expression of MnSOD mRNA relative to vector-transfected controls. Thus, both endogenously produced and exogenously added TRX elevate MnSOD gene expression. These findings suggest a novel mechanism involving reduced TRX in regulation of MnSOD.
منابع مشابه
Differential Expression of Mitochondrial Manganese Superoxide Dismutase (SOD) in Triticum aestivum Exposed to Silver Nitrate and Silver Nanoparticles
Background: The increasing use of nanoparticles (NPs) may have negative impacts on both organisms andthe environment. Objectives: The differential expression of mitochondrial manganese superoxide dismutase (MnSOD) gene in wheat in response to silver nitrate nanoparticles (AgNPs) and AgNO3 was investigated. Materials and Methods: A quantita...
متن کاملIschemic postconditioning relieves cerebral ischemia and reperfusion injury through activating T-LAK cell-originated protein kinase/protein kinase B pathway in rats.
BACKGROUND AND PURPOSE Ischemic postconditioning (IPostC) protects against ischemic brain injury. To date, no study has examined the role of T-LAK-cell-originated protein kinase (TOPK) in IPostC-afforded neuroprotection. We explored the molecular mechanism related with TOPK in antioxidant effect of IPostC against ischemia/reperfusion. METHODS Focal ischemia was induced in rats by transient mi...
متن کاملTLR2 activation induces antioxidant defence in human monocyte-macrophage cell line models
When monocytes are recruited to inflammation/infection sites, extravasate and differentiate into macrophages, they encounter increasing levels of oxidative stress, both from exogenous and endogenous sources. In this study, we aimed to determine whether there are specific biochemical mechanisms responsible for an increase in oxidative stress resistance in differentiating macrophages. We performe...
متن کاملPertussis Toxin Treatment Alters Manganese
Exposure of rats to hyperoxia or to treatment with endotoxin, increases lung manganese superoxide dismutase (MnSOD) gene expression. However, the paths by which these environmental signals are transduced into enhanced MnSOD gene expression are unknown. We now provide evidence that heterotrimeric G proteins are involved in the hyperoxia-induced increase in lung MnSOD gene expression but that per...
متن کاملOverexpression of Manganese Superoxide Dismutase Selectively Modulates the Activity of Jun-associated Transcription Factors in Fibrosarcoma Cells1
Manganese superoxide dismutase (MnSOD) Is reduced in a variety of tumor cells and has been proposed to be a new type of tumor suppressor gene. The mechanism(s) by which MnSOD suppresses cancer development is currently unknown, However, expression of this antioxidant might play a significant role in maintaining cellular redox status. The relationship between MnSOD expression and modulation of DN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 17 6 شماره
صفحات -
تاریخ انتشار 1997